\square

Question Paper Code : 50776

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Second Semester
Civil Engineering
MA 6251 - MATHEMATICS - II
(Common to Mechanical Engineering (Sandwich)/Aeronautical Engineering/ Agriculture Engineering/Automobile Engineering/Biomedical Engineering/ Computer Science and Engineering/Electrical and Electronics Engineering/ Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Environmental Engineering/Geoinformatics Engineering/Industrial

Engineering and Management/Instrumentation and Control Engineering/
Manufacturing Engineering/Materials Science and Engineering/Mechanical Engineering/Mechanical and Automation Engineering/Mechatronics Engineering/

Medical Electronics Engineering/Petrochemical Engineering/Production
Engineering/Robotics and Automation Engineering/Biotechnology/Chemical Engineering/Chemical and Electrochemical Engineering/Fashion Technology/Food

Technology/Handloom \& Textile Technology/Information Technology/
Petrochemical Technology/Petroleum Engineering/Pharmaceutical Technology/
Plastic Technology/Polymer Technology/Textile Chemistry/Textile Technology)
(Regulations 2013)
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions.
PART - A

1. If $\vec{F}=(x+3 y) \vec{i}+(y-2 z) \vec{j}+(x+2 k z) \vec{k}$ has divergence zero, find the unknown value of k.
2. Evaluate the integral $\int_{C} \vec{F} \cdot d \vec{r}$ if $\vec{F}=x^{2} \vec{i}^{i}+\left(x^{2}+y^{2}\right) \vec{j}$ and C is the curve given by $y=x^{2}-4$ from $(2,0)$ to $(4,12)$.
3. Evaluate $\frac{1}{D^{2}-6 D+9}\{3 \log 2\}$
4. Solve $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
5. Find $L[f(t)]$ if $f(t)=\left\{\begin{array}{c}e^{-1}, 0<t<4 \\ 0, t>4\end{array}\right.$
6. Find $f(\infty)$, if $L[f(t)]=\frac{1}{s(s+\alpha)}$.
7. Examine whether $y+e^{x}$ cosy is harmonic.
8. Find the image of the line $x=1$ under the transformation $w=z^{2}$.
9. Expand $\frac{z-1}{z+1}$ about $z=1$.
10. Find the singular points of $f(z)=\frac{\sin z}{z}$

PART - B
($5 \times 16=80$ Marks)
11. a) i) Prove that $\vec{F}=\left(x^{2}-y^{2}+x\right) \vec{i}-(2 x y+y) \vec{j}$ is a conservative field and find the scalar potential of $\overline{\mathrm{F}}$.
ii) Apply Green's theorem to evaluate $\int_{c}\left(x y-x^{2}\right) d x+x^{2} y d y$ along the closed curve C formed by $y=0, x=1$ and $y=x$.
(OR)
b) i) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$ where $\vec{F}=z \vec{i}+x \vec{j}-3 y^{2} z \vec{k}$ and S is the surface of the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
ii) Evaluate $\iint \vec{F} . \hat{n}$ dS using Gauss divergence theorem for $\vec{F}=x^{2} \vec{i}+y^{2} \vec{j}+z^{2} \vec{k}$ taken over the cube bounded by the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=1, \mathrm{y}=1$, $\mathrm{z}=1$.
12. a) i) Solve $\left(D^{3}-5 D^{2}+7 D-3\right) y=e^{2 x} \cosh x$ where $D=\frac{d}{d x}$
ii) Solve $(D+2) x+3 y=0,(D+2) y+3 x=2 e^{2 t}$ where $D=\frac{d}{d t}$. (OR)
b) i) Solve $(x+1)^{2} D^{2}+(x+1) D+y=\sin 2(\log (x+1))$ where $D=\frac{d}{d x}$.
ii) Solve by method of variation of parameters $y^{\prime \prime}-6 y^{\prime}+9 y=\frac{e^{3 x}}{x^{2}}$ where $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{dx}}$.
13. a) i) Evaluate
i) $\int_{0}^{\infty} t e^{-2 t} t \sin 3 t d t$ using Laplace transform and
ii) $L^{-1}\left[\cot ^{-1}\left(\frac{2}{s+1}\right)\right]$
(8)
ii) Find $\mathrm{L}^{-1}\left[\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right]$ using convolution theorem.
(OR)
b) i) Find the Laplace transform of a square wave defined by

$$
f(t)=\left\{\begin{array}{l}
E, 0<t<\frac{i}{2}, \tag{8}\\
-E, \frac{a}{2}<t<a,
\end{array} \text { and } f(t)=f(t+a)\right.
$$

ii) Using Laplace transform, solve $y^{\prime \prime}+y^{\prime}=t^{2}+2 t$ when $y(0)=4, y^{\prime}(0)=-2$.
14. a) i) Prove that $f(z)=z^{n}$ is analytic for all values of n and find its derivative.
ii) Find the bilinear transformation which maps the points $z=1, i,-1$ in to the points $w=i, 0,-i$. Hence find the image of $|z|<1$.
b) i) Prove that the function $\mathrm{u}=\log \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$ is harmonic and hence find its conjugate harmonic
ii) Find the image of the circle $|z-2 i|=2$ under the transformation $w=\frac{1}{z}$.
15. a) i) Evaluate $\int_{C} \frac{C \cos \pi z}{z^{2}-1} d z$ around a rectangle with vertices at $2 \pm i,-2 \pm i$.
ii) Evaluate $\int_{0}^{2 \pi} \frac{1}{2+\cos \theta} \mathrm{d} \theta$ using contour integration.
(OR)
b) i) Expand $\frac{1}{(z-1)(z-2)}$ in a Laurent series valid for
(i) $|z|<1$, ii) $1<|z|<2$.
ii) Use calculus of residues to find $\int_{0}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$ where $a, b>0$.

